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Abstract. Scenarios based on the existence of large or warped (Randall–Sundrum model) extra dimensions
have been proposed for addressing the long standing puzzle of the gauge hierarchy problem. Within the
contexts of both those scenarios, a novel and original type of mechanism generating small (Dirac) neutrino
masses, which relies on the presence of additional right-handed neutrinos that propagate in the bulk, has
arisen. The main objective of the present study is to determine whether this geometrical mechanism can
produce reasonable neutrino masses also in the interesting multi-brane extensions of the Randall–Sundrum
model. We demonstrate that, in some multi-brane extensions, neutrino masses in agreement with all
relevant experimental bounds can indeed be generated but at the price of a constraint (stronger than
the existing ones) on the bulk geometry, and that the other multi-brane models even conflict with those
experimental bounds.

PACS. 14.60.Pq, 14.60.St, 11.10.Kk

1 Introduction

The old proposal for additional spatial dimension(s) [1,2]
and the more recent idea of brane universe models [3–7]
have received considerable attention in the late nineties as
novel frameworks for addressing a long standing puzzle: the
gauge hierarchy problem. Indeed, several new approaches
toward the gauge hierarchy question, based on the exis-
tence of extra dimension(s), have been suggested in the
literature [8–17].

The first approach [8–10], which was proposed by
Arkani-Hamed, Dimopoulos and Dvali (ADD), is the fol-
lowing one. If spacetime is the product of a 4-dimensional
Minkowski spacetime with a n-dimensional compact space,
and standard model (SM) fields are confined to the 4-
dimensional subspace whereas gravity propagates also in
the extra compact space, then one has

M2
Pl = Mn+2Vn, (1)

M being the fundamental (4 + n)-dimensional mass scale
of gravity, MPl = 1/

√
8πGN � 2.4 1018 GeV (GN ≡ New-

ton constant) the effective 4-dimensional (reduced) Planck
scale and Vn the volume of compact space. Hence, by taking
a sufficiently large size of new n dimensions, the value of
fundamental scale M can be of the order of TeV, which re-
moves the important hierarchy between the gravitational
and electroweak energy scales. Nevertheless, another hi-
erarchy is then introduced: the discrepancy between the
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electroweak symmetry breaking scale (∼ 100 GeV) and the
compactification scale (∼ V −1/n

n ).
An elegant alternative solution to the gauge hierarchy

problem was proposed by Randall and Sundrum (RS) [11,
12]. The RS scenario consists of a 5-dimensional theory in
which the extra dimension (parameterized by y) is com-
pactified on a S1/Z2 orbifold of radius Rc (so that −πRc ≤
y ≤ πRc). Gravity propagates in the bulk and the fifth di-
mension is bordered by two 3-branes with tensions tuned
such that,

Λ(y=0) = −Λ(y=πRc) = −Λ/k = 24kM3
5 , (2)

where Λ is the bulk cosmological constant, M5 the fun-
damental 5-dimensional Planck scale and 1/k the anti-de-
Sitter (AdS5) curvature radius (see below). Within this
context, the zero mode of graviton is localized on the pos-
itive tension brane, namely the 3-brane at y = 0. Hence,
while on this brane (referred to as the Planck brane) the
4-dimensional Planck mass is of order MPl, on the other
brane (at y = πRc) the effective Planck scale,

M� = wMPl, (3)

is affected by the exponential “warp” factor w = e−kπRc .
From (3), we see that for a small extra dimension such
that Rc ∼ 11/k (k is typically of order M5 ∼ MPl), one
has w ∼ 10−15 and M� = O(1) TeV (the 3-brane at y =
πRc is then called the TeV-brane). If the SM particles (in
particular the Higgs boson) are confined to the TeV-brane,
they feel an effective Planck scale M� of the same order
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of magnitude as the electroweak scale. In this sense, the
RS model provides a new natural solution to the gauge
hierarchy problem.

Besides, in the RS framework, no additional strong hier-
archy between fundamental scales appears (in contrast with
the ADD approach) as the compactification scale (2πRc)−1

is of order M5/70. However, in the RS scenario, we live
on a brane with negative tension (see (2)) which seems
generically problematic as far as gravity and cosmology
are concerned (see [16, 18–31] for a complete discussion).
In particular, as it is clear from the corrected Friedmann
equation for the Hubble expansion rate of our brane world,
on our negative tension brane the energy density of nor-
mal matter/radiation should be negative, which conflicts
with the absence of any noticeable effects of anti-gravity
in our universe.

In order to avoid this potential cosmological problem,
some multi-brane extensions of the RS model (still ad-
dressing the gauge hierarchy problem), in which the SM
fields are stuck on a positive tension brane, have been con-
structed [13–17]. In the RS model extension of [13,14], two
positive tension branes are sitting on the fixed points of
the S1/Z2 orbifold, namely at y = 0 and y = ±πRc, and a
third parallel 3-brane with negative tension can move freely
in between. Within this “+−+” scenario, our universe is
the “+” brane at y = ±πRc (the two brane RS model
is denoted as “+−” accordingly to this terminology). In
another possible RS extension: the “++−” model [13,15],
a “+” brane is located at y = 0, a “−” brane at y = ±πRc
and we live on an intermediate parallel “+” brane. In the
“++” model [16,17], two “+” branes are sitting on the two
orbifold fixed points and we live on one of them.

It must be first mentioned that the original motivation
for the multi-brane RS extensions (which is to provide a so-
lution to the cosmological problem, arising in the RS model,
related to the modification of the Friedmann equations) is
not as strong as it seems. Indeed, in the presence of a mech-
anism stabilizing the size of the extra dimension within the
RSmodel (like themechanisms suggested in [32] or [33]), the
ordinary FRW (Friedmann–Robertson–Walker) equations
are recovered [34]. However, the multi-brane RS extensions
remain interesting alternatives to the initial version of RS
model since they give rise to a specific phenomenology. As
a matter of fact, the multi-brane RS extensions possess a
specific feature: the first KK excitations of a bulk fermion
(or the graviton) are typically anomalously light (relatively
to the electroweak scale) [35, 36]1. The reason being that
the magnitude of wave functions for the first fermion KK
modes typically approximates closely that for the 0-mode,
differing significantly only in a region where the 0-mode
wave function is exponentially suppressed.

Several other models, which extend the original RS
framework, have also been elaborated in the literature,
including the possibilities of configurations with several
branes [38–40], intersecting branes [41,42] or non-compact
extra dimension(s) [43–46] (as for instance in the case of an

1 In contrast, within the pure RS framework, the first
KK modes of bulk fermions have typically electroweak-
scale masses [37].

infinite crystalline universe [15,47–49]). Those theoretical
models lead generally to a rather complicated phenomenol-
ogy.

Nevertheless, within all these attractive scenarios,
namely ADD, RS and its multi-brane extensions, under-
standing the lightness of neutrinos (with respect to the
electroweak energy scale) becomes a challenge. Indeed, in
this new class of brane universe models, the (effective)
mass scale of gravity is of the order of TeV so that there
exist no high energy scales. Hence, this brane world picture
conflicts with the traditional interpretation of small neu-
trino mass size invoking the “see-saw” mechanism [50–52],
which requires a superheavy mass scale close to the GUT
scale (∼ 1016 GeV).

In the context of the ADD scenario, a novel type of
explanation for the smallness of neutrino masses has been
proposed in terms of purely geometrical means [53,54] (the
associated neutrino phenomenology has been extensively
studied in [55–73,75])2. We recall here briefly the basic ideas
of this kind of explanation, which does not rely on the ex-
istence of any high energy scale. The starting point is the
observation that a right-handed neutrino added to the SM
would be a gauge singlet, and could thus propagate freely
inside the bulk. In such a situation, small Dirac neutrino
masses can be naturally generated as the Yukawa couplings,
between the Higgs boson, SM left-handed neutrinos and
zero mode of bulk right-handed neutrinos, are suppressed,
due to the weak interaction probability of bulk neutrinos
with SM fields (which are confined to our 4-dimensional
subspace). This suppression is considerable since, in the
ADD framework, the volume of extra compact space is
large relative to the thickness of the wall where SM states
propagate. More precisely, the effective 4-dimensional mass
term, between SM neutrinos and zero mode of bulk neu-
trinos, involves a suppression factor of the form (see (1))

mν = κ (MnVn)−1/2 υ = κ (M/MPl) υ, (4)

where κ represents the dimensionless Yukawa coupling con-
stants and υ � 174 GeV the vacuum expectation value
(VEV) of the SM Higgs boson. The physical neutrino
masses are the eigenvalues of the whole neutrino mass ma-
trix, which involves the masses of type (4), but also the
masses of the Kaluza–Klein (KK) excitations of bulk right-
handed neutrinos, as well as the masses mixing those KK
modes with the SM left-handed neutrinos (which originate
from the Yukawa couplings).

The same kind of intrinsically higher-dimensionalmech-
anism as above (with an additional right-handed neutrino
in the bulk), producing small neutrino masses, can apply to

2 Let us mention that, within the ADD framework, other
types of higher-dimensional mechanism, which might permit the
generation of small neutrino masses, have been suggested: the
lightness of neutrinos could result from the power-law running
of Yukawa couplings [53] or the breaking of lepton number on
distant branes in the bulk [54,76].
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the RS model case3. Nevertheless, within the RS scenario,
the compactification volume is small (2πRc ∼ 70M−1

Pl )
and the AdS5 geometry tends to localize the 0-mode of
bulk neutrino around the brane where are stuck SM par-
ticles (TeV-brane)4. Hence, in order to obtain the desired
order of magnitude for the effective neutrino mass scale,
via this higher-dimensional mechanism, one has to intro-
duce a 5-dimensional mass term for the bulk right-handed
neutrino [37] (see also [79] for the specific case of a 7-
dimensional spacetime including one warped extra dimen-
sion). Indeed, such a mass term of the appropriate form can
modify the wave function for the 0-mode5 of bulk neutrino
(applying the ideas of [4, 84]) so that its overlap with the
TeV-brane, and thus its effective 4-dimensional Yukawa
coupling with the Higgs boson and SM left-handed neu-
trino, appears to be greatly reduced.

We mention here an alternative possibility, although it
corresponds to a different physical context from the one
considered in the present paper: in the RS model, all SM
fields (except the Higgs boson, otherwise the gauge hierar-
chy problem would reappear [85,86]) could live inside the
bulk [85,87,88], if the SM gauge group is enhanced (in order
to satisfy the electroweak precision constraints [89]). This
realistic hypothesis provides a new way for interpreting the
flavor structure of SM fermion masses [88,90–92].

In the present work, we address the question which
arises naturally from the above discussion: does the same
type of geometrical mechanism as above (with a 5-dimen-
sional mass term for the bulk right-handed neutrino) enable
one to create reasonable neutrino mass values in multi-
brane extensions of the RS scenario?

One expects that indeed sufficiently reduced neutrino
masses can again be achieved through this mechanism.
However, within the multi-brane RS extensions, the first
KK excitations of right-handed neutrino can acquire ultra-
light masses compared to the electroweak scale (see above).
By consequence, some mixing (induced by the Yukawa cou-
plings) angles between the SM left-handed neutrinos and
KK excitations of right-handed neutrinos should be typi-
cally large. Now, one can obtain severe experimental upper
bounds on values of this kind of mixing angle between SM
neutrinos and KK modes of right-handed neutrinos, since
those KK states constitute new sterile neutrinos with re-

3 Within the RS context, small (Dirac) neutrino masses can
also be generated by another kind of model [77], in which the
lepton number symmetry is explicitly broken on the Planck
brane while the right-handed neutrino is localized on the TeV-
brane. Remarkably, because of the AdS/CFT correspondence,
there exists a purely 4-dimensional dual description of such
models, where the right-handed neutrino is a composite bound
state (composite right-handed neutrinos were independently
studied in [78]).

4 Unlike the 0-mode of graviton which is localized on the pos-
itive tension branes, the 0-mode of bulk fermions are localized
on the negative tension ones (see (2)).

5 In the RS model, bulk fermions possess systematically a
0-mode [37], in contrast with the 0-mode of bulk scalar [80]
and vector [81–83] fields which exists only for vanishing mass
in the fundamental theory.

spect to gauge interactions. In particular, these mixing
angles can be strongly constrained by considering the ex-
perimental data on Z0 boson widths associated to certain
decay channels.

Therefore, we will derive these constraints on mixing
angles (arisingdue to thepresence of bulk right-handedneu-
trinos) which are issued from the measurements ofZ0 boson
widths, within the context of multi-brane generalizations
of the RS model. Then, we will determine whether those
constraints translate into bounds, on the theoretical param-
eters, which do or do not exclude multi-brane extensions of
the RS model from the possible frameworks addressing si-
multaneously the gauge hierarchy and small neutrino mass
questions (the other experimental constraints on neutrino
mass matrix will also be considered).

The organization of this paper is as follows. In Sect. 2, we
describe in details the entire neutrino mass matrix, within
the “+ − +” framework, in case additional right-handed
neutrinos propagate in the bulk. Then, in Sect. 3, by con-
sidering this neutrino mass matrix, we derive and discuss
constraints on the “+−+” scenario coming from experi-
mental bounds which concern neutrino physics. Based on
our understanding of the “+ − +” analysis performed in
those two sections, we discuss in Sect. 4 the cases of the
other multi-brane RS extensions: the “++” and “+ +−”
models. Finally, we conclude in Sect. 5.

2 Neutrino masses in the “+ − +” model

2.1 The “+ − +” model

The goal of this work is a phenomenological study on the
new paradigm of anomalously light KK excitations which
is associated to the multi-brane RS extensions. We will
begin by concentrating on a certain concrete realization,
namely the “+−+” model, of this new paradigm because
of the relative simplicity of calculations within the “+−+”
context.

We mention here that the “+−+” model6 can be seen
as a limiting case of the more general “+ − −+” brane
universe scenario (with a flat space between the two “−”
branes) [15,93].

The “+−+” model suffers from the presence of unac-
ceptable radion fields, associated with the perturbations
of the freely moving “−” brane sandwiched between “+”
branes, which are necessarily ghost states with negative
kinetic term [94, 95]. This fact is indeed problematic re-
garding the construction because the system is probably
quantum mechanically unstable. Classically, the origin of
the problem is connected to the violation of the weaker
energy condition [96,97].

However, we will consider the “+−+” model as a “toy
model” and a calculation tool allowing us then to develop a

6 The regions of parameter space that we consider in the
present work, namely the regions where the gauge hierarchy
problem can effectively be solved, do not correspond to the
exotic Bi-gravity limit (giving rise to modifications of gravity
at extremely large distances [13]) of the studied “+-+” model.
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better understanding of the phenomenological analyzes on
the other multi-brane RS extensions, namely the “++” and
“+ +−” models (which will be treated later; see Sect. 4).
Now, those “++” and “+ +−” models represent concrete
realizations of the mentioned new paradigm which do not
suffer from the presence of radion ghost states.

Moreover, a 6-dimensional version, totally consistent
from the theoretical point of view, of the “+−+” model has
been elaborated [98]. Within this 6-dimensional framework,
due to the non-trivial internal space, the characteristic
bounce of warp factor can appear even without the presence
of any (moving) “−” brane. Hence, one can avoid here the
problematic presence of radion ghost states.

Now, in this 6-dimensional setup, the “+” 3-branes of
the “+−+” model are replaced by 4-branes, but one of their
dimensions is compact, unwarped and of Planck length.
Thus, in the low energy limit the spacetime on the branes
appears 3-dimensional. The 6-dimensional “+−+” version
has similar predictions and almost identical properties as
the considered 5-dimensional “+-+” version, so that one
can extend the present phenomenological study to the case
of a 6-dimensional spacetime.

Besides, there exists a potential way out of the radion
ghost problem arising in the “+−+” model: the “−” brane
can be replaced by an external constant 4-form field which
would mimic the effects of such a brane [99,100].

One can also assume that there exist a specific frame-
work in which the radion ghost fields, appearing in the
“+ − +” model, condensate (so that the background can
be stabilized) [101] or that the theory containing ghosts
may in fact be viable due to other kinds of particular cir-
cumstances [102]. An alternative solution would be that
there exist a certain regularization procedure (like the one
proposed in the recent works [103, 104]) which applies to
the “+−+” model, resulting in a theory free from ghosts
or tachyons.

2.2 Formalism of the “+ − +” model

In view of a comparison with the “+−+” scenario, we recall
that within the RS model, the considered solution to the 5-
dimensional Einstein’s equations, respecting 4-dimensional
Poincaré invariance, leads to the non-factorisable metric:

ds2 = e−2σ(y)ηµνdxµdxν + dy2, (5)

with σ(y) = k|y|, xµ [µ = 1, . . . , 4] the coordinates for the
familiar 4 dimensions and ηµν = diag(−1, 1, 1, 1) the 4-
dimensional metric. The bulk geometry, associated to the
metric (5), is a slice of AdS5 space. By considering the
fluctuations of metric (5), one obtains, after integration
over y, the expression for the effective 4-dimensional Planck
scale MPl:

M2
Pl =

M3
5

k

(
1− e−2πkRc

)
. (6)

Within the “+ − +” model, the tensions of the “+”
brane sitting at y = 0, the “−” brane at y = L− (L− > 0)
and the “+” brane at y = L+ = πRc (L+ > L−) are tuned

to (to be compared with (2))

Λ(y=0) = −Λ(y=L−) = Λ(y=L+) = −Λ/k = 24kM3
5 . (7)

In this framework, the metric ansatz, that should respect
the 4-dimensional Poincaré invariance, is taken as in (5)
with the following solution for the function σ(y):

σ(y) = k(L− − ||y| − L−|). (8)

This solution can only be trusted for an AdS5 curvature
smaller than the fundamental 5-dimensional Planck scale:

k < M5. (9)

In the “+−+” extension of the RS model, the expression
for the effective 4-dimensional Planck scale MPl becomes
(to be compared with (6))

M2
Pl =

M3
5

k

(
1− 2e−2kL− + e−2k(2L−−L+)

)
. (10)

Besides, for the solution (8), the warp factor defined by
(3), in which M� denotes now the effective Planck mass on
the “+” brane at y = L+ = πRc (where are confined all
SM fields), reads

w = e−σ(L+) = e−k(2L−−L+). (11)

Hence, in the “+−+” scenario, the gauge hierarchyproblem
is solved forM� = O(TeV) which is achieved when the warp
factor verifies

w ∼ 10−15, (12)

or equivalently:

2L− − L+ ∼ 34/k. (13)

In view of future discussions, we introduce the quantity x
defined by

x = k(L+ − L−). (14)

Then (10) can be rewritten in terms of the parameters w
and x:

M3
5 = kM2

Pl
[
1 + w2 (1− 2e−2x

)]
. (15)

2.3 Neutrino mass matrix

In this section, we describe all the relevant contributions to
the neutrino mass matrix. The higher-dimensional mech-
anism generating Dirac neutrino masses, that we study in
this paper, requires a 5-dimensional mass term for the
additional bulk neutrino (see Sect. 1). In the “+ − +”
background considered here, this mass term enters the 5-
dimensional action of bulk neutrino as

S5 =
∫

d4x

∫
dy
√
G

×
(
EM

a

[
i
2
Ψ̄γa

(−→
∂M −←−∂M

)
Ψ +

ωbcM

8
Ψ̄
{
γa, σbc

}
Ψ

]
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−mΨ̄Ψ − λ5HL̄Ψ + h.c.
)
, (16)

G = det(GMN ) = e−8σ(y) (with σ(y) as given in (8))7

being the determinant of the metric, EM
a = diag(eσ(y),

eσ(y), eσ(y), eσ(y), 1) the inverse vielbein, Ψ = Ψ(xµ, y) the
neutrino spinor, γa = (γµ, iγ5) the 4-dimensional represen-
tation of Dirac matrices in 5-dimensional flat space, ωbcM

the spin connection (c.f. [35]), m the neutrino mass in the
fundamental theory, λ5 the Yukawa coupling constant (of
mass dimension −1/2), H the Higgs boson field and L the
SM lepton doublet.

In order to localize the 0-mode of bulk neutrino, the
mass m must have a non-trivial dependence on the fifth
dimension, and more precisely with a ‘(multi-)kink’ pro-
file [4,84]. The mass m could be the VEV of a scalar field.
We consider the economic possibility that this scalar field
has a double rôle, in the sense that it also creates the branes
themselves [105] which imposes the following condition on
the VEV:

m = c
dσ(y)

dy
, (17)

where c is a dimensionless parameter and σ(y) is defined by
(8). We check that the VEV (17) is well compatible with the
Z2 symmetry (y → −y) of the S1/Z2 orbifold: this VEV is
odd under the Z2 transformation (see (8)), like the product
Ψ̄Ψ (as fermion parity is defined by Ψ(−y) = ±γ5Ψ(y)), so
that the term mΨ̄Ψ is even which allows one to preserve
the invariance of action (16).

At this stage, what do we know about the value of pa-
rameter c? Since the mass m is a parameter that appears
in the original 5-dimensional action (16), its natural abso-
lute value is of the order of the fundamental 5-dimensional
Planck scale M5. Besides, dσ(y)/dy = ±k (see (8)) and
k < M5 (see (9)). Hence, it is clear from (17) that the
“physical” value of c verifies: c > 1 (as discussed in [35]).

By consequence, the relevant case is the one character-
ized by c > 1/2, in which the 0-mode of bulk neutrino is
localized on the two positive tension branes (at y = 0 and
y = L+) [36] like the 0-mode of graviton (as mentioned
in footnote 4). Therefore, the effective 4-dimensional mass
m

(0)
ν , induced by the Yukawa coupling of action (16) and

mixing the 0-mode of bulk right-handed neutrino ψ(0)
R with

the SM left-handed neutrino νL (stuck on the “+” brane
at y = L+), is reduced for the same geometrical reason
that the effective scale of gravity M� (on the brane sitting
at y = L+) is suppressed. This mass m(0)

ν can thus be ex-
pressed (for c > 1/2) in term of the warp factor w defined
by (3) and (11) [35]:

m(0)
ν �

√
k

M5

(
c− 1

2

)
wc−1/2 υ. (18)

In this expression, the 5-dimensional Yukawa parameter
λ5 has been taken to have its natural value: λ5 �M−1/2

5 .
7 We use the capital indexes M , N , . . . for objects defined

in 5-dimensional curved space, and the lower-case indexes a,
b, . . . for objects defined in the tangent frame.

Similarly, the Yukawa coupling of action (16) also in-
duces the following effective 4-dimensional masses mixing
νL with the first KK excitation of neutrino ψ(1)

R [35]:

m(1)
ν �

√
k

M5

(
c− 1

2

)
υ, (19)

or with the other KK excitations ψ(n)
R [n > 1] [35]:

m(n)
ν �

√
k

M5

(
c− 1

2

)
e−x υ [n = 2, 3, 4, . . .]. (20)

The x dependence in (20) can be understood as follows:
the KK states ψ(n)

R [n > 1] are localized around the “−”
brane at y = L− (in contrast with the first KK mode ψ(1)

R
which is localized on the two positive tension branes) so
that when x increases their wave functions overlap with
νL (trapped on the “+” brane at y = L+), and thus the
associated mass m(n)

ν decreases.
Finally, the excited modes of bulk neutrino ψ(n) [n ≥ 1]

acquire KK masses of the form (for c > 1/2) [36]:

m
(1)
KK =

√
4c2 − 1 w e−(c+1/2)x k, (21)

m
(n+1)
KK = ξn w e−x k [n = 1, 2, 3, . . .], (22)

where ξ2i+1 is the (i + 1)th root of Jc−1/2(X) = 0 (i =
0, 1, 2, . . .) and ξ2i is the ith root of Jc+1/2(X) = 0 (i =
1, 2, 3, . . .), Jc±1/2(X) denoting the Bessel functions of the
first kind and order c± 1/2. We remark that the KK mass
m

(1)
KK of the first excited state ψ(1) is manifestly singled out

from the rest of the KK tower.
In conclusion, within the framework we study (namely

the “+ − +” scenario with an additional massive bulk
neutrino), the complete neutrino mass matrix appears in
the effective lagrangian as

L = −ψ̄ν
LMψν

R + h.c., (23)

ψν
L,R representing the 4-dimensional fields: ψν

L = (νL, ψ
(1)
L ,

ψ
(2)
L , . . .) and ψν

R = (ψ(0)
R , ψ

(1)
R , ψ

(2)
R , . . .), and reads

(see (18)–(22))

M =



m

(0)
ν m

(1)
ν m

(2)
ν . . .

0 m
(1)
KK 0 . . .

0 0 m
(2)
KK . . .

...
...

...
. . .


 . (24)

3 Experimental constraints
on the “+ − +” model from neutrino physics

3.1 Number of neutrino generations

3.1.1 Bound from Z0 width measurements

If the SM left-handed neutrino mixes with some sterile
(with respect to the SM gauge interactions) left-handed
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neutrinos, then its effective weak charge is diminished [91].
That is the reason why, in such a situation, the measure-
ments of Z0 boson width induce a constraint on the mixing
angles between sterile left-handed neutrinos and the SM
one. In our framework, we must study this constraint since
the SM neutrino νL mixes with the KK excitations of bulk
neutrino ψ(n)

L [n ≥ 1] (see Sect. 2.3), which constitute ster-
ile left-handed neutrinos.

Here, we derive this constraint in the considered phys-
ical context. Let us define the quantity nν as

nν =
Γ exp(Z0 → invisible)
Γ th(Z0 → ν̄LνL)

, (25)

where Γ exp(Z0 → invisible) stands for the experimental
data on theZ0 boson width associated to the decay channel
into any undetectable particle, and Γ th(Z0 → ν̄LνL) rep-
resents the known theoretical prediction of the Z0 boson
width associated to the decay into a single family of SM
neutrino (neutrino masses being neglected relative to the
Z0 mass). The value of nν obtained experimentally is [106]

nν = 2.985± 0.008. (26)

In the absence of any sterile neutrino effect, nν is noth-
ing but an experimental estimation of the number of SM
neutrino generations. Since in our framework, the SM neu-
trinos mix not only with each other but also with the sterile
neutrinos ψ(n)

L , their effective weak coupling is suppressed
so that the number of SM neutrino generations reads [37]

ngen
ν = 3 = nν/ cos2 θν , (27)

where cos2 θν represents the admixture of lightest neutrino
eigenstates for the SM electron neutrino, in case this ad-
mixture is identical for the muon and tau neutrinos. The
lightest neutrino eigenstates stand here for all the neutrino
eigenstates with a mass smaller than half the Z0 boson
mass (so that they can be produced in the Z0 decay).
The quantity cos2 θν involves thus mixing angles between
SM left-handed neutrinos and sterile neutrinos ψ(n)

L . Equa-
tions (26) and (27) lead to the (expected) bound on this
angle θν :

tan2 θν < 0.0077. (28)

What is the precise definition of cos θν in the case of a
unique lepton flavor (the three flavor case will be treated
in Sect. 3.3.4)? This definition is

cos θν = U01, (29)

where U is the unitary matrix responsible for the ba-
sis transformation:

ψν
L = U ψphys

L , (30)

ψphys
L containing the neutrino mass eigenstates: ψphys

L =
(ν1, ν2, ν3, . . .) (and ψν

L being defined in Sect. (2.3)). The
two indexes 0 and 1 of matrix element (29) correspond
respectively to the SM neutrino νL in the vector ψν

L and to
the lightest neutrino eigenstate ν1 in vector ψphys

L . More

explicitly, one has νL = U01 ν1+ . . . Here, we have assumed
that only the lightest neutrino eigenstate ν1 has a mass
smaller than half the Z0 mass (The hypothesis that more
neutrino eigenstates have masses smaller than half the Z0

mass will be discussed in Sect. 3.3.3).

3.1.2 Implications for the parameters of the “+−+” model

In this part, we will translate the experimental bound (28)
into a constraint on the fundamental parameters in the
version of the “+−+” scenario with a massive bulk right-
handed neutrino.

The mixing angle θν entering (28), and defined in (29)–
(30), is calculated in Appendix B, in case the neutrino mass
matrix is given by (24) which is characteristic of the pres-
ence of a bulk right-handed neutrino (eigenvalues of the her-
mitian square of matrix (24) are discussed in Appendix A).
The result appears in (B.7). The KK masses and masses
mixing the SM neutrino with excited states of bulk neu-
trino, which enter (B.7), can be replaced by their expression
within the “+−+” framework given in (21)–(22) and (19)–
(20) respectively: this leads to the following expression for
tan2 θν in terms of the fundamental parameters:

tan2 θν � υ2

w2kM5
(31)

×
[

e(2c+1)x

2(2c+ 1)
+
(
c− 1

2

)( ∞∑
i=1

1
(ζ+

i )2
+

∞∑
i=1

1
(ζ−

i )2

)]
,

where ζ+
i and ζ−

i are the ith roots (i = 1, 2, 3, . . .) of
Jc+1/2(X) = 0 and Jc−1/2(X) = 0 respectively. The two
infinite sums of (31) can be performed exactly and yield

tan2 θν � υ2

w2kM5

[
e(2c+1)x

2(2c+ 1)
+ g(c)

]
,

with

g(c) =
(c+ 1)(2c− 1)
(2c+ 3)(2c+ 1)

. (32)

From this expression of tan2 θν and the experimental bound
(28) on tan2 θν , we deduce the following constraint on the
theoretical parameters x,w, k,M5 and c (to be added to the
SM parameters) of the “+−+” model with an additional
massive bulk neutrino:

x � 1
2c+ 1

ln
[
0.0077× 2(2c+ 1)

w2kM5

υ2

− (2c− 1)(2c+ 2)
(2c+ 3)

]
. (33)

The ln function involved in (33) is well defined on the
intervals of parameters that we will consider (see (41)).

It is instructive to remark that, in fact, the upper bound
(28) on tan2 θν has been expressed as an upper bound on
the parameter x (c.f. (33)). This point can be understood in
a physical way as follows. The dominant effect of a decrease
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of x on the matrix (24) is that the KK masses (21)–(22)
for excited modes of bulk neutrino increase, so that these
excited modes ψ(n) [n ≥ 1] tend to decouple. This induces
a decrease of the mixing, quantified typically by tan2 θν

(see Sect. 3.1.1), between the left-handed componentψ(n)
L of

those sterile neutrinos ψ(n) [n ≥ 1] and the SM neutrino νL.

3.2 Neutrino masses

In this section, we will determine the constraints on the
parameters of the “+ − +” scenario, with an additional
massive bulk neutrino, originating from the experimental
bounds on neutrino masses. We will concentrate on the ex-
perimental bounds on absolute neutrino mass scales: here,
the relevant bounds are those extracted from the tritium
beta decay experiments [107–110] since those bounds are
independent of whether neutrinos are Majorana or Dirac
particles. In contrast, the other bounds issued from neu-
trinoless double beta decay experiments (see [111] for a
review) apply only on Majorana neutrino masses and thus
do not hold in the present framework where neutrinos ac-
quire Dirac masses (see (23)).

The best limit coming from data on tritium beta decay
has been obtained by the Mainz experiment and reads [108]

mβ ≤ 2.2 eV (95% C.L.). (34)

We also indicate the limit extracted from data on tri-
tium beta decay measured by the Troitsk experiment:
mβ ≤ 2.5 eV (95% C.L.) [109]. In the assumption of no
mixing between lepton flavors, the quantity mβ = m(νe)
introduced in (34) is the electron neutrino mass, or equiv-
alently the associated neutrino mass eigenvalue [107,110].
Therefore, in our physical context with only one lepton
flavor (the electron flavor), the experimental limit (34) can
be applied on the smallest neutrino mass eigenvalue mν1

(see end of Sect. 3.1.1 and (A.1)) which leads then to

mν1 ≤ 2.2 eV. (35)

It must be mentioned that under the realistic hypothesis
of three mixing lepton flavors, the effective mass, to which
are sensitive the tritium beta decay experiments, reads

mβ =
(∑3

i=1 |UMNS
ei |2 m2

νi

)1/2
where UMNS is the lepton

mixing matrix [107,110]. In this case, taking into account
the experimental lepton mixing angle values [112] and small
squaredneutrinomass differences (|m2

ν2
−m2

ν1
| ∈ [6.1, 8.4]×

10−5 eV2 and |m2
ν3
− m2

ν1
| ∈ [1.4, 3.0] × 10−3 eV2 at 2σ

from a global data analysis [112]8) obtained from oscillation
experiments, one would expect that (34) still leads to upper
bounds on the three weakest neutrino mass eigenvalues
mν1,2,3 of the order of eV (as in (35)).

Besides, in the case of three lepton flavors, the upper
cosmological bound

∑3
i=1mνi < 0.7↔ 1.01 eV (depending

8 The study performed in [112] is based on the results of
the atmospheric and solar neutrino experiments as well as the
accelerator (K2K) and reactor (CHOOZ and KamLAND) ex-
periments.

on cosmological priors), which comes from WMAP and
2dFGRS galaxy survey [113], also corresponds to limits on
the three weakest neutrino mass eigenvalues mν1,2,3 of the
same order as in (35).

An expression for the smallest neutrino mass eigenvalue
mν1 , which enters (35), can be found by combining (A.8)
and (B.7). The result is

mν1 � cos θν m
(0)
ν . (36)

The expression (36), together with (18) and (35), leads to
the following experimental constraint on fundamental pa-
rameters:

cos θν

√
k

M5

(
c− 1

2

)
wc−1/2 υ � 2.2 eV. (37)

3.3 Combination of the constraints

3.3.1 Constraint on the parameter c

Here, we deduce from (37) (representing an experimental
bound on neutrino mass) a constraint on theoretical pa-
rameter c (defined by (17)). For the value of ratio k/M5
involved in (37), we consider the range 10−4 � k/M5 � 1,
its upper boundary being motivated by (9) and its lower
one by the fact that it is not desirable to introduce a new
high hierarchy between the AdS5 curvature k and the fun-
damental scale of gravity M5. Hence, by using the value of
warp factor given in (12) (for which the gauge hierarchy
problem is solved), the bound (28) and (37), we obtain the
numerical results:

c � 1.08 for k/M5 = 10−4, (38)

c � 1.22 for k/M5 = 1. (39)

Those results mean that the obtained value of the lower
limit on parameter c lies typically in the interval [1.08, 1.22]
if 10−4 � k/M5 � 1. The dependence of this lower limit
for c on the warp factor value is weak: for instance, if
w = {10−13; 10−14; 10−15; 10−16; 10−17} then (39) reads
c � {1.33; 1.27; 1.22; 1.17; 1.13} [k/M5 = 1] respectively.

3.3.2 Constraint on the parameter k

In fact, the bound (33) on the parameter x allows one
to impose a constraint on the AdS5 curvature k. Let us
derive this constraint. For that purpose, we first observe
that, within the considered “+−+” model, the quantity
x defined by (14) is positive (see Sect. 2.2), namely

x > 0. (40)

Indeed, the opposite case x < 0 (⇔ 0 < L+ < L−) corre-
sponds to the brane configuration of the “++−” scenario,
in which a “+” brane (at y = L+) is sitting between an-
other “+” brane (at y = 0) and a “−” brane (at y = L−).
(33) and (40) lead to

0.0077× 2(2c+ 1)
w2kM5

υ2 − (2c− 1)(2c+ 2)
(2c+ 3)

� 1. (41)
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By considering (41) together with the limit (38), which
is conservative all through the considered range 10−4 �
k/M5 � 1 (see Sect. 3.3.1), we find the following numeri-
cal result:

w
√
kM5 � 1.1 TeV. (42)

Now, by taking into account the relevant values of the
brane positions L− and L+ (see (47), presented later), the
relation (10) (characteristic of the “+−+” model) can be
rewritten in a good approximation as

M3
5 � kM2

Pl. (43)

This new relation, the condition (9) and the value of warp
factor (12) (required in order to solve the gauge hierarchy
problem) can be combined to give w

√
kM5 ≤ O(TeV),

which leads, together with (42), to the important result

w
√
kM5 = O(TeV). (44)

This result and the M5 expression (43) give rise to the
following expected constraint on curvature parameter k
(for the value of w given by (12)):

k ∼M5 ∼MPl. (45)

Let us make an important comment on the relation
found in (45): this relation, k ∼ M5, can be interpreted
as a condition of “naturality” (fixing the AdS5 curvature
parameter k) within the generic “+−+” framework. In the
sense that this relation avoids the possibility to introduce
a new strong hierarchy between the energy scale k and
fundamental Planck scale M5 in the “+−+” model (the
main interest of the “+ − +” model being to solve the
problem of strong hierarchy between the electroweak scale
and scale M5).

3.3.3 Constraint on the parameter x

(1) Numerical values: Let us present and discuss the values
for limit (33) on the x parameter of the “+−+” model. We
recall that this limit is nothing else but an expression of the
experimental bound (28) originating from considerations
on the number of neutrino families.

In Fig. 1, we show the value of this limit (33) on x as a
function of the parameter c. The other quantity w

√
kM5,

on which also depends the limit (33), has been set around
the TeV scale in this figure. This choice is motivated by (44)
which results from a combination of various constraints.

The behavior of curves drawn on Fig. 1 can be explained
physically in the following terms. The decrease of c has
two dominant effects on matrix (24). The first one is a
decrease of the masses (19)–(20) mixing the SM neutrino
νL with KK excitations of bulk neutrino ψ(n) [n ≥ 1]. The
second one is that the KK mass (21) for the first excited
mode ψ(1) increases, so that this excited state ψ(1) tends
to decouple. These two effects induce a decrease of the
mixing, quantified typically by tan2 θν (see Sect. 3.1.1),
between the SM neutrino νL and sterile neutrinos ψ(n)

[n ≥ 1]. Therefore, a c decrease can be compensated by an
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Fig. 1. Value of the upper bound on x obtained in (33) as a
function of parameter c, forw

√
kM5 equal to 2 TeV (dotted line),

3 TeV (dot-dashed line), 5 TeV (dashed line) and 10 TeV (plain
line). The choice of those values for the parameter combination
w

√
kM5 is motivated by (42) and (44). The regions situated

above the curves are rejected by bound (33)

increase of x in a way such that tan2 θν remains fixed at
a given value, since tan2 θν increases with x (see (32)) as
we have explained at the end of Sect. 3.1.2. This feature
allows one to understand why in Fig. 1 the x value, which
is associated to a value of tan2 θν fixed to its limit: 0.0077
(as the x bound represented in Fig. 1 expresses the bound
(28) on tan2 θν), increases when c diminishes, all other
fundamental parameters (w, k and M5) being fixed.
(2) Bound on x from the combination of constraints on
c, k and x: Motivated by the constraint on k obtained in
(45) and the condition (12) concerning gauge hierarchy,
we choose to consider (39) as the relevant constraint on c
originating from experimental bounds on neutrino masses.
As it is clear from Fig. 1, by combining this constraint
(39) on c with the constraint (33) on x, we can obtain
a value for the limit on x as a function of the quantity
w
√
kM5: the associated numerical results are respectively

(the necessary condition w
√
kM5 = O(TeV) is due to the

relation obtained in (44)),

x � {0.51; 0.78; 1.09; 1.50},
for w

√
kM5 = {2; 3; 5; 10}TeV. (46)

Let us comment on the use of the constraint (39) on c
for deriving the limit (46) on x. The constraint (39) on c
corresponds to the following exact values for the relevant
fundamental parameters: w = 10−15 and k/M5 = 1. Now,
only the associated orders of magnitude are imposed for w
and k/M5 by the condition (12) concerning gauge hierar-
chy and the constraint on k obtained in (45), respectively.
Hence, one may think of considering the constraint (39)
on c induced by other values of w and k/M5 around re-
spectively 10−15 and 1. However, the constraint (39) on
c possesses a weak dependence on both the parameter w
(see end of Sect. 3.3.1) and the ratio k/M5 (see also (38)).
In conclusion, the dependences of the c constraint (39) on
w and k/M5 do not introduce another significant depen-
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dence on the fundamental parameters for the x limit (46)
(compared to the dependence of x limit (46) on w

√
kM5).

In summary, we have derived the experimental bound
(46) on the fundamental parameter x of the “+−+” sce-
nario. The obtained values of this upper bound (46) are
valid for w ∼ 10−15 (necessary for solving the gauge hier-
archy problem), k < M5 (condition (9) of validity for the
“+−+” model) with k ∼M5 (resulting from various rel-
evant constraints) and M3

5 � kM2
Pl (good approximation

of relation (10) characteristic of the “+−+” framework),
the two latter conditions leading to k ∼M5 ∼MPl.

From a general point of view, it is particularly inter-
esting to obtain an experimental limit (as in (46)) on the
fundamental parameter x in the “+−+” framework (with
an additional massive bulk neutrino). As a matter of fact,
among the five fundamental parameters of the “+ − +”
model including a massive bulk neutrino, namely x, w, k,
M5 and c, only x is really free from the theoretical point of
view. In the sense that the four other fundamental param-
eters undergo the following direct constraints. The warp
factor w has to be approximately equal to 10−15 if the
gauge hierarchy question is to be addressed (see (12)). The
AdS5 curvature k must be of the same order of magnitude
as the fundamental Planck mass M5 in order to avoid the
appearance of a hierarchy between energy scales. The value
of gravity scaleM5 is restricted via the formula (10) (given
in a good approximation by (43)), which is dictated by
the “+ − +” theory, to be a known function of the other
fundamental parameters x, w and k (or equivalently L−,
L+ and k). Finally, the quantity c, which parameterizes
the amplitude of 5-dimensional neutrino massm (see (17)),
fixes the neutrino mass scales, and can thus be constrained
by considering their realistic value (see Sect. 3.3.1).
(3) Consequences of x constraint for other parameters/
quantities: The parameters x (defined by (14)) and w (de-
fined by (11)) of the “+−+” scenario can be replaced by
the theoretically equivalent parameters L− and L+ (de-
fined in Sect. 2.2). Therefore, the experimental bound on
x obtained in (46) together with the condition (12) (⇔
(13)) on w concerning the gauge hierarchy give rise to the
approximative expression for L− and L+:

L− ∼ L+ ∼ 34/k. (47)

From another point of view, the experimental constraint
(33) on the parameter x (illustrated in Fig. 1), which re-
sults from a study on the number of neutrino generations,
induces in particular a lower bound on the KK mass m(1)

KK
for the first excited mode of the bulk neutrino since this
mass depends on x through formula (21). Following the
presentation of Fig. 1, this lower bound is shown on Fig. 2
as a function of the parameter c as the limit (33) on x
depends on c. We see on Fig. 2 that this lower bound on
m

(1)
KK, once combined with the bound (39) on c (due to ex-

perimental constraints on the neutrino masses), gives rise
to the conservative bound

m
(1)
KK � 1.6 TeV. (48)

(4) Domain of validity for the obtained constraint on x:
Let us consider the constraint (33) on x which is illustrated
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Fig. 2. Mass (21) for the first neutrino KK excitation as a
function of the parameter c. The parameter x in mass expression
(21) has been set to its limit (33). The quantity w

√
kM5 entering

(33) has been fixed to 2 TeV (dotted line), 3 TeV (dot-dashed
line), 5 TeV (dashed line) and 10 TeV (plain line). The choice
of taking systematically w

√
kM5 = O(TeV) is motivated by

the relevant condition obtained in (44). Furthermore, we have
considered the case where k = M5 (recall that having k ∼ M5

avoids the presence of a new typical energy scale value) so that
the quantity w

√
kM5 is equal to the product wk involved in

KK mass expression (21). Domains lying below the curves are
ruled out (see (21) and (33))
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Fig. 3. Values of parameter x (domains below the curves)
corresponding to the situation where only one neutrino mass
eigenvalue is smaller than half the Z0 boson mass. Those values
are presented as a function of parameter c, for wk equal to 2 TeV
(dotted line), 3 TeV (dot-dashed line), 5 TeV (dashed line) and
10 TeV (plain line). We have also set the ratio k/M5 at the
physically relevant value of one so that each of the present
curves (obtained for a fixed value of wk) can be associated to a
curve in Fig. 1 (obtained for a fixed value of w

√
kM5). This is

useful as the domains shown here (below the curves) represent
the regions of validity for the upper bounds on x given in Fig. 1

in Fig. 1. This constraint was obtained from considerations
on the Z0 width measurements in the case where only the
lightest neutrino eigenstate ν1 has a mass smaller than half
the Z0 mass (see Sect. 3.1.1). Therefore, this constraint
holds in the region of parameter space where only one
neutrino eigenstate has a mass smaller than half the Z0

mass. This region is shown in Fig. 3. It corresponds to
the region in which all neutrino mass eigenvalues except
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the smallest one, namely mν2 ,mν3 , . . . (see footnote 11),
are larger than half the Z0 mass. We mention that those
eigenvalues are approximatively given by mν2 � m(1)

ν and
mνi � m(i−1)

KK [i ≥ 3] (see the mass definitions in Sect. 2.3)
for c ∈ [1, 10], wk ∈ [2, 10] TeV and x � 4.

Wededuce fromFigs. 1 and 3 thatwe have only excluded
intermediate values ofx, ormore precisely that the obtained
range of values is

x < O(1) or O(4)↔ O(6) < x. (49)

We discuss now the scenario where there exist several
neutrino mass eigenvalues smaller than half the Z0 mass, a
scenario which arises within the regions of parameter space
lying above the curves shown in Fig. 3. For instance, let us
consider the simplest case with two neutrino mass eigen-
values smaller than half the Z0 mass. Then, the admixture
cos2 θν introduced in Sect. 3.1.1 would be now defined as

cos2 θν = α1U
2
01 + α2U

2
02, (50)

instead of (29). The suppression factor αi [i = 1, 2] (0 <
αi ≤ 1) quantifies the phase space suppression of the
Z0 decay rate into neutrinos of mass mνi

(c.f. footnote
11) relative to the Z0 decay rate into massless neutrinos
Γ th(Z0 → ν̄LνL) (which enters (25)). The suppression fac-
tor α1 is taken to be equal to 1 in a good approximation
since the mass mν1 of lightest neutrino eigenstate ν1 is
negligible compared to the Z0 mass (see (35)) so that the
associated phase space suppression is also negligible. In or-
der to deduce a constraint on the parameters of the “+−+”
model from the bound (28) on the angle θν due to Z0 width
measurements, one has to express θν (defined now by (50))
in terms of those parameters. This is far from being trivial
for the two following reasons. First, the squared matrix ele-
mentU2

02 entering (50) involves an unknown sum (see (B.5))
of Bessel function roots (via the KK masses m(m)

KK [m ≥ 1]
given in (21)–(22)). Secondly, the factor α2 and squared
matrix element U2

02 (see (B.5)) involve the eigenvalue mν2 ,
of the infinite neutrino mass matrix (24), which has to be
expressed in terms of the mass matrix elements. Hence, in
the domains of parameter space situated above the curves
of Fig. 3, it turns out to be difficult to derive analytically a
constraint on the parameter x from the bound (28) due to
Z0 width measurements. A numerical approach does not
seem easier since the definition of admixture cos2 θν de-
pends on the number of neutrino mass eigenvalues smaller
than half the Z0 mass (as well exhibited by (50)) so that
the computation of the constraint on x depends strongly
on the region of parameter space studied. Nevertheless,
one can predict that this constraint on x, issued from the
bound (28) on θν , is less severe than the constraint pre-
sented in Fig. 1 (obtained in the domains below the curves
of Fig. 3) since there are more positive contributions to the
admixture cos2 θν (compare (29) with (50) for example).
(5) Comparison of the bound placed on x with existing
bounds: We now compare our experimental bound on x
obtained in Fig. 1 (in the parameter spaces illustrated on
Fig. 3) with the other experimental bounds on xwhich have
already been derived in the literature [13, 14] within the

“+−+” framework. These other bounds on x have been ob-
tained by considering KK excitations of the graviton. More
precisely, the authors of [13,14] have placed a constraint on
x by requiring that the contribution of resonant graviton
KK state production to the SM process e+e− → µ+µ−
is not visible at leptonic colliders. Furthermore, another
bound on x has been deduced from the condition that the
exchange of graviton KK modes does not induce noticeable
corrections to the Newton law (which is tested experimen-
tally) [13,14].

First, we consider our upper bound (valid for x � 4.9):

x � 0.3, (51)

obtained (see Fig. 1) for the typical value c = 3, and

w
√
kM5 = 2 TeV. (52)

Let us also consider, for example, the precise warp factor
value (the bound (51) is valid for w ∼ 10−15)

w = 4.5 e−35 = 2.84 10−15. (53)

For values of x and w given respectively by (51) and (53),
the property (15) of the “+−+” scenario reads in a good
approximationM3

5 � kM2
Pl, a relation which leads together

with (52) and (53) to

k = 3.82 1017 GeV. (54)

To summarize, our bound (51) on x holds for the values of
fundamental parameters w, k and M5 given respectively
by (53), (54) and (10) (⇔ (15)). For the same values of
parametersw, k andM5, the bound on x, coming from con-
siderations on graviton KK state production at colliders,
is [13, 14]

x ∈ [0, 1.2]U[2.3, 3.1], or x � 4.2, (55)

while the bound due to possible modifications of gravity
reads [13,14]

x � 16.6 (56)

All those bounds on x are summarized in Table 1 together
with other values of the bounds associated to different
parameter values9. The results presented in (51), (55) and
Table 1 show that our constraint on x, obtained from the
study of experimental bounds on the neutrino masses, is
typically stronger than the existing constraint coming from
collider physics.

3.3.4 The case of three lepton flavors

(1) Generalization of the neutrino mass terms: Here, we
discuss the realistic situation where there are three families

9 For the values of warp factor w considered in Table 1,
no additional bound on x can be put by considering the pro-
duction of graviton KK mode at leptonic colliders (via the
reaction e+e− → γ + light KK mode giving a missing energy
signal) [13,14].
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Table 1. Experimental constraints on the parameter x of the “+−+” model
issued from considerations on neutrino physics [upper line] (c.f. Figs. 1 and 3)
and exchange of graviton KK modes [lower line] [13,14] for c = 3 and various
values of the other theoretical parameters w and k (M5 being fixed by the
characteristic relation (10) or equivalently (15)). The choice of restricting
the parameter space to w ∼ 10−15 and k ∼ MPl is motivated, respectively,
by the gauge hierarchy question (see Sect. 2.2) and the condition k ∼ M5

(leading together with (15), or equivalently (43), to k ∼ MPl) under which
no new typical energy scale value is introduced. Finally, all parameter values
are taken such that the necessary condition k < M5 (see (9)) is well fulfilled

w
√

kM5 = 2 TeV w
√

kM5 = 5 TeV

w = 4.5 e−35

= 2.84 10−15

[k = 3.82 1017 GeV]
x ∈ [0, 0.3] or x � 4.9
x ∈ [0, 1.2]U[2.3, 3.1]U[4.2, 16.6]

[k = 1.51 1018 GeV]
x ∈ [0, 0.6] or x � 6.3
x ∈ [0, 1.8]U[3.1, 17.4]

w = 10 e−35

= 6.30 10−15

[k = 1.15 1017 GeV]
x ∈ [0, 0.3] or x � 4.5
x ∈ [0, 1.1]U[2.2, 2.6]U[3.2, 16.5]

[k = 4.56 1017 GeV]
x ∈ [0, 0.6] or x � 5.9
x ∈ [0, 1.8]U[2.8, 17.2]

of neutrino. First, in this case, the neutrino mass matrix
(24) must be modified. As a matter of fact, it is natural to
assign three different 5-dimensional massesmf [f = e, µ, τ ]
(see (16)), and thus three parameters cf (see (17)), to the
three generations of bulk neutrino Ψf . Therefore, there are
three masses m(n)

νf [f = e, µ, τ ;n = 0, 1, 2, . . .], mixing the
right-handed modes of three bulk neutrinos ψ(n)

fR with the
three left-handed SM neutrinos νfL, which are associated
to the three parameters cf (see (18)–(20)). While this mass
m

(n)
νf , which must enter (24), differs for each family of bulk

neutrino state ψ(n)
fR (associated to cf ), it is identical for

each family of SM neutrino νfL if one assumes a universal
value for the Yukawa coupling parameter λ5 (see the action
(16)). Similarly, there are now three types of KK mass
m

(n)
KKf [f = e, µ, τ ;n = 1, 2, 3, . . .], for the excited modes

of three bulk neutrinos ψ(n)
f , which correspond to the three

parameters cf (see (21)–(22)).
(2) New bound on x: In Sect. 3.3.3, we deduced the bound
(46) on the parameter x from the constraints (33) (due
to measurements of the Z0 width: see Sect. 3.1) and (37)
(due to data on the neutrino masses: see Sect. 3.2) in the
simplified case of one lepton family. Let us discuss the
changes of those limits (46), (33) and (37) as one passes
to the case of three lepton families.

First, we determine the equivalent of the constraint
(33) in the case of three lepton species. By extending the
calculation performed in Appendix B to Nf = 3 flavors,
we obtain the following expression for the neutrino mixing
angle θν , which enters the experimental constraint (28):

tan2 θν � 1
Nf
− 1 +

∞∑
m=1

(
m

(m)
νe

m
(m)
KKe

)2

+
∞∑

n=1

(
m

(n)
νµ

m
(n)
KKµ

)2

+
∞∑

p=1

(
m

(p)
ντ

m
(p)
KKτ

)2

. (57)

We notice that, forNf = 1 flavor, this formula reduces well
to the result (B.7) found in Appendix B. After replacing
the masses m(n)

νf and m
(n)
KKf [f = e, µ, τ ;n = 1, 2, 3, . . .],

entering (57), by their own expression (see the above dis-
cussion, (19)–(20) and (21)–(22)), we find (in the same way
as in Sect. 3.1.2) we have

tan2 θν � 1
Nf
−1+

υ2

w2kM5

∑
f=e,µ,τ

[
e(2cf +1)x

2(2cf + 1)
+ g(cf )

]
,

(58)
the function g being defined as in (32). The tan2 θν ex-
pression (58) for three flavors exhibits the same kind of
structure and the same dependence on the fundamental
parameters (x, w, k,M5 and cf [f = e, µ, τ ]) as the tan2 θν

expression (32) for one flavor. Hence, for identical param-
eter values, one expects the limit (33) for one flavor (value
given in Fig. 1), derived from the combination of the con-
straint (28) on tan2 θν (due to Z0 width measurements)
with the tan2 θν expression, to be of the same order of
magnitude as the equivalent limit for three flavors.

Secondly, we comment the constraint (37) in the sit-
uation where three lepton species are considered. In such
a situation, the experimental limits on absolute physical
neutrino masses are of the order of eV like in the case of a
unique lepton generation (first one), as shown in Sect. 3.2.
By consequence, one expects that, for three generations,
imposing these experimental limits (on the three smallest
neutrino mass eigenvalues mν1,2,3) leads to bounds on the
three parameters cf [f = e, µ, τ ] of same order as the bound
on c (given in (38)–(39)) obtained for one generation from
the constraint (37) (application of the experimental limit
on the smallest neutrino mass eigenvalue mν1).

Finally, since the values of the limit (33) (due to Z0

width measurements) and the limit on c from the constraint
(37) (due to the data on the neutrino masses) are expected
to remain of the sameorder ofmagnitudewhen onepasses to
the case of three lepton flavors (see the above discussions),
the bound (46) on parameter x, which is deduced from
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those two limits, should also still be of the same order in
the case of three lepton flavors.

Similarly, in the case of three lepton flavors, by de-
termining the parameter space where three neutrino mass
eigenvalues are smaller than half the Z0 mass, one should
find a domain of validity for the limit due to Z0 width
measurements that resembles the domain shown in Fig. 3
for the one flavor case. Indeed, the neutrino mass matrix
elements have the same dependence on the fundamental
parameters in both the cases of one and three flavors.
(3) Characteristic examples: Now, we will give examples
of values, within the case of three lepton flavors, for the
bound on the parameter x deduced from the constraints
due to Z0 width measurements and experimental limits on
the absolute neutrino masses. Those typical examples will
confirm the expectation (see above) that this bound on x
has the same order of magnitude in the two cases of one
and three flavors.

Let us start by considering the simplified scenario where
the three parameters cf [f = e, µ, τ ] are related, for in-
stance, through the formula

cτ = 1.5 cµ = (1.5)2 ce, (59)

which reduces the number of degrees of freedom. The hy-
pothesis (59) is motivated by the fact that values, for the
three fundamental parameters cf , of similar orders of mag-
nitude are desirable. Under this assumption (59), requiring
that the three smallest eigenvaluesmν1,2,3 of neutrino mass
matrix (24) (modified to involve the three cf parameters)
are smaller than the eV scale (see Sect. 3.2) yields the nu-
merical result

ce � 1.25 for k/M5 = 1 and w = 2 TeV/MPl, (60)

ce � 1.29 for k/M5 = 1 andw = 10 TeV/MPl, (61)

which is close to the same result obtained in the case of
one neutrino generation for similar values of w (see (39)
with following text). Then, by taking into account this
bound of (60)–(61) on ce (together with (59)) and applying
the constraint (28) (from Z0 width measurements) on the
tan2 θν expression (58) in terms of all the fundamental
parameters, we find (with k = M5 = MPl accordingly to
characteristic relation (43))

x � {1.02; 1.00} for w
√
kM5 = {2; 10}TeV. (62)

The other example of a simplification hypothesis we
consider, namely

cτ = 2.5 cµ = (2.5)2 ce, (63)

corresponds to values of the three cf parameters more
distinct than in the first hypothesis of (59). Under the
assumption (63), the constraints from Z0 width measure-
ments (namely the constraint (28) on tan2 θν) and from
limits on the neutrino mass scales (given in Sect. 3.2) lead
to the same bound on ce as in (60)–(61) and then, by using
expression (58), to (with k = M5 = MPl):

x � {0.47; 0.46} for w
√
kM5 = {2; 10}TeV. (64)

In conclusion, the characteristic values (62) and (64) for
the bound on the parameter x (issued from experimental
considerations on neutrino physics), which were derived in
the case of three neutrino flavors, are of the same order as
the values for the identical bound obtained in the case of
one neutrino flavor (see (46)).
(4) Additional experimental constraints: In Sect. 3, we have
used some experimental data on neutrino physics (coming
from measurements of the Z0 width and effective neutrino
masses) in order to constrain the “+−+” model, and in
particular to place a bound on the parameter x, within the
typical case of one lepton flavor.

In the more precise case of three lepton flavors, one
could also use the bounds on the squared neutrino mass
differences (∆m2

32 and∆m2
21) and the lepton mixing angles

(θ12, θ23 and θ13), which are derived from the present results
of neutrino flavor oscillation experiments [112,114]. Never-
theless, these lepton mixing angles depend on the neutrino
mass matrix, which is predicted by the considered “+−+”
scenario (with additional massive bulk neutrinos), but also
on the charged lepton mass matrix, which in contrast is
not determined by our scenario. Therefore, in order to use
the bounds on these lepton mixing angles for constraining
the “+−+” model, one should consider a complementary
model dictating the flavor structure of the charged lepton
masses, which is beyond the scope of our study.

We also mention that, in a detailed approach based on
three lepton species, one could also envisage to use the
astrophysical and cosmological constraints (like those due
to considerations on big bang nucleosynthesis and dura-
tion of the supernova 1987A neutrino burst [115]) on the
mixing angles between a sterile neutrino and an active SM
neutrino (either νe, νµ or ντ ), as well as the SNO (salt
phase) data [116, 117] on the fraction of sterile neutrino
components in the resultant solar νe flux at Earth, and the
experimental bound on the branching ratio of the flavor
violating decay channel µ→ eγ (which is enhanced by the
presence of significantly massive sterile neutrinos [118]). As
a matter of fact, recall that, within the considered “+−+”
scenario, the KK excitations of bulk neutrinos (denoted as
ψ

(n)
f [f = e, µ, τ ;n ≥ 1]) behave like sterile neutrinos.

4 The cases of the “++” and “+ + −” models
4.1 The “++” model

Here, we discuss, within the same philosophy as above, the
case of another realization of the paradigm of anomalously
light KK excitations: the “++” model.

The absence of any “−” brane in the “++” model
protects it against the problem of radion ghost fields. Nev-
ertheless, it turns out that for the construction of such a
“++” configuration, it is essential to have the AdS4 geom-
etry on both branes [16,17].

In the “++” model, the warp function e−σ(y) (which
determines the metric as shown in (5)10) can reach a min-
10 In the “++” context, with our definition (5) of the metric,
the warp function e−σ(y) must also depend on the familiar
coordinates xµ [µ = 1, . . . , 4] [16,17].
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imum at the point y = y0 lying between the two “+”
branes which sit on the two orbifold fixed points at y = 0
and y = L+ (where we live) [16,17]. This geometrical fea-
ture is also a fundamental characteristic of the “+ − +”
model in which the warp function e−σ(y) reaches also a
minimum at a point y = L− (see (8)) lying between two
“+” branes at y = 0 and y = L+ (here, there exists a
“−” brane at the extremum y = L−). In this sense, the
geometrical configuration of the “++” model mimics that
of the “+−+” model.

This similarity has two main consequences. First, the
localizations of the bulk neutrino KK modes, and thus the
masses (given by (18)–(20) in the “+−+” model) mixing
those KK modes with SM neutrinos (trapped at y = L+),
should be comparable in the “++” and “+−+” models.
Secondly, the KK masses (given in (21)–(22) for “+−+”
and in [35] for “++”) for excitations of bulk neutrinos
are similar (with identical dependences on the theoretical
parameters) in the “++” and “+−+” models.

Therefore, the whole effective neutrino mass matrix
(which involves only these masses, (18)–(20) and (21)–(22),
as (24) shows, within the “+ − +” model) is expected to
behave similarly in the equivalent parameter spaces of the
“++” and “+−+” scenarios. Hence, in the “++” scenario
(for w = w(k, L+, y0) ∼ 10−15), one expects to deduce,
from experimental constraints on the neutrinos, limits on
the equivalent parameter

x = k(L+ − y0) (65)

of the same order as the limits on x that we have obtained
within the “+−+” framework, namely

x < O(1) or O(4)↔ O(6) < x. (66)

4.2 The “+ + −” model

Let us finally study the third multi-brane RS extension,
namely the consistent “+ + −” model. Recall that the
“+ +−” model (see Sect. 1) consists of a “+” and a “−”
brane placed at the two orbifold fixed points y = 0 and
y = πRc respectively, the SM fields being confined on
a second “+” brane (at y = L+) which moves freely in
between (0 < L+ < πRc). Hence, this model does not
contain any freely moving “−” brane and thus does not
give rise to the existence of radion ghost fields [119].

We begin by describing the neutrino mass matrix in
the “+ + −” framework. The elements m(m)

ν (mixing the
SM neutrinos with bulk neutrino KK excitations) of the
neutrino mass matrix (see (24)) are given by [35],

m(0)
ν �

√
k1

M5

(
c− 1

2

)
wc−1/2 υ, (67)

m(n)
ν � 8 ζ− 2

n

Jc+1/2(ζ−
n )

(
k2

k1

)3/2√
c e−3x υ

[n = 1, 2, 3, . . .], (68)

where k1 and k2 are the two curvatures of the bulk (satis-
fying k1 ∼ k2 but with k1 < k2), w = w(k1, L+) ∼ 10−15,
ζ−
n is the nth root of Jc−1/2(X) = 0 and (to be compared

with the parameters (14) and (65)),

x = k2(πRc − L+). (69)

We note that the mass m(0)
ν for the 0-mode of the neutrino

given in (67) has the same expression as in the “+ − +”
context (see (18)).

The other relevant elements of the neutrino mass matrix
(see (24)), namely the KK masses m(m)

KK (for bulk neutrino
excitations), read [35],

m
(m)
KK = ζ−

m w e−(x+k2L+) k2 [m = 1, 2, 3, . . .]. (70)

We now treat the bound (28) on the angle θν issued from
Z0 width measurements within the “+ + −” framework.
The admixture cos2 θν introduced in Sect. 3.1.1 is definedby
(see (50) for the definition of αi and (B.5) for the expression
of U2

0i)

cos2 θν =
N∑

i=1

αiU
2
0i, (71)

where the index i = 1, 2, . . . , N labels theN neutrino eigen-
states ν1, ν2, . . . , νN which have masses smaller than half
the Z0 mass (see footnote 11). For i ∈ [1, 2, . . . , N ], there
exists an index mmin such that for m > mmin the relation

m
(m) 2
ν

m
(m) 2
KK −m2

νi

m
(m) 2
KK

m
(m) 2
KK −m2

νi

>
m

(m) 2
ν

m
(m) 2
KK

(72)

becomes true (because the ratio m(m) 2
KK /m2

νi
becomes suf-

ficiently large). Now, the sum
∑∞

m=1 m
(m) 2
ν /m

(m) 2
KK is

divergent. Indeed, this sum reads (see (68) and (70))

∞∑
m=1

m
(m) 2
ν

m
(m) 2
KK

� 64 c
w2

v2 k2

k3
1

e2(k2L+−2x)
∞∑

m=1

ζ− 2
m

J2
c+1/2(ζ

−
m)

,

(73)
and one has ζ− 2

m+1 > ζ− 2
m and J2

c+1/2(ζ
−
m+1) < J2

c+1/2(ζ
−
m).

Therefore, we deduce from (72) that all the sums entering
(c.f. (B.5)) all the squared matrix elements U2

0i of (71)
diverge, so that all those elements tend to zero. As a con-
sequence, the phenomenological condition (28) on θν (c.f.
(71)) cannot be fulfilled within the “+ +−” context.

5 Conclusion

We have studied the paradigm of anomalously light KK
excitations through its different realizations, namely the
multi-brane RS extensions of type “+ − +”, “++” and
“+ +−”. The considered parameter space corresponds to
the domains where the gauge hierarchy problem is effec-
tively solved. We have assumed that massive right-handed
neutrinos (added to the SM) propagate in the bulk.

We have shown that the present experimental bounds
on the neutrino masses and mixing angles either constrain
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(see the respective limits (49) and (66) on the geometrical
parameters (14) and (65) of the “+−+” and “++” mod-
els) relatively strongly (c.f. Sect. 3.3.3) or exclude (as it
occurs for the “+ +−” model) the theoretical realizations
of the paradigm.
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Appendix A: Neutrino mass eigenvalues

Within the “+−+” model, the method we use in order to
obtain the physical neutrino masses11 mνi

is to diagonalize
the hermitian square of the neutrino mass matrixM (see
(23) and (24)):

MM† = U diag(m2
ν1
,m2

ν2
,m2

ν3
, . . .) U†, (A.1)

U being the neutrino mixing matrix defined by (30). We
note that the Yukawa coupling constant λ5 (c.f. (16)) has
been taken real (see Sect. 2.3) so that the neutrino mass
matrix M does not involve any CP violation phase. The
presence of non-vanishing complex phases would not affect
our study.
(1) One KK excitation: First, we observe that the mass
ratio m

(0)
ν /m

(1)
ν , which is equal to wc−1/2 (see (18) and

(19)), has a typical value much smaller than one. Indeed,
the gauge hierarchy problem is solved for w ∼ 10−15 (c.f.
(12)) and the experimental bounds on the neutrino mass
imply c � 1.08 (in a conservative way: see Sect. 3.3.1),
which lead to wc−1/2 � 2 10−9.

In the simplified case where only the first KK excitation
of the bulk neutrino is considered, a straightforward cal-
culation, at first order in m(0)

ν /m
(1)
ν , gives us the following

expressions for the two squared neutrino mass eigenvalues
ofMM†:

m2
ν1
� m

(1) 2
KK

m
(0) 2
ν

m
(1) 2
KK +m

(1) 2
ν

, (A.2)

m2
ν2
� m

(1) 2
KK +m(1) 2

ν

(
1 +

m
(0) 2
ν

m
(1) 2
KK +m

(1) 2
ν

)
. (A.3)

(2) The KK tower: Let us begin by determining the smallest
squared neutrino mass eigenvalue m2

ν1
, in the general case

of an infinite tower of KK states. The eigenvalues m2
νi

,
entering (A.1), are solutions of the equation

det[MM† −m2
νi

1] = 0, (A.4)

11 The indexes i of the physical neutrino masses mνi are chosen
such that mν1 < mν2 < mν3 . . .

where 1 denotes the identity matrix. After calculation of
the determinant, this equation can be rewritten as[ ∞∑

p=0

m(p) 2
ν −m2

νi
−

∞∑
p=1

m
(p) 2
ν m

(p) 2
KK

m
(p) 2
KK −m2

νi

]

×
∞∏

p=1

(m(p) 2
KK −m2

νi
) = 0. (A.5)

Since taking m2
νi

= m
(p) 2
KK leads to a divergence in (A.5),

this equation is equivalent to
∞∑

p=0

m(p) 2
ν −m2

νi
−

∞∑
p=1

m
(p) 2
ν m

(p) 2
KK

m
(p) 2
KK −m2

νi

= 0, (A.6)

which can be transformed into

m(0) 2
ν −m2

νi

(
1 +

∞∑
p=1

m
(p) 2
ν

m
(p) 2
KK −m2

νi

)
= 0. (A.7)

Assuming that an eigenvalue ismuch smaller than theweak-
est squared KK mass m(1) 2

KK , one can deduce its expression
at leading order from (A.7) and the result is

m2
ν1
� m

(0) 2
ν

1 +
∑∞

p=1
m

(p) 2
ν

m
(p) 2
KK

. (A.8)

This eigenvalue would be the smallest one since the others
are larger than m

(1) 2
KK (as we will see in (A.12)). In fact,

the squared mass (A.8) is effectively the weakest eigenvalue
because the hypothesis made to derive it, namely,

m2
ν1
� m

(1) 2
KK , (A.9)

constitutes a good approximation in our framework (see
the bounds onmν1 , in (35), and onm(1)

KK, in (48) and Fig. 2).
We discuss now the other squared neutrino mass eigen-

values m2
νi

[i ≥ 2]. At leading order in m
(0)
ν /m

(1)
ν , (A.6)

becomes

m2
νi

(
1 +

∞∑
p=1

m
(p) 2
ν

m
(p) 2
KK −m2

νi

)
= 0. (A.10)

The solution m2
νi

= 0 of this equation corresponds, at
leading order in m

(0)
ν /m

(1)
ν , to the eigenvalue m2

ν1
given

by (A.8). The other solutions m2
νi

[i ≥ 2] of (A.10) verify
the relation ∞∑

p=1

m
(p) 2
ν

m
(p) 2
KK −m2

νi

= −1. (A.11)

For each solution m2
νi

[i ≥ 2] of (A.11), it is clear that at
least one termof the involved summust be negative. Strictly
speaking, for any i ≥ 2, there exists at least one index p such
that m(p) 2

ν /(m(p) 2
KK −m2

νi
) < 0, or equivalently m(p) 2

KK <

m2
νi

. We thus conclude that all the eigenvalues (except the
smallest one) are larger than the weakest squared KK mass,
namely,

m2
νi
> m

(1) 2
KK [i = 2, 3, 4, . . .]. (A.12)
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Appendix B: Neutrino mixing angle

In this appendix, we derive the expression of the neutrino
mixing angle θν , defined in (29), as function of the elements
entering neutrino mass matrix M (c.f. (24)) within the
“+−+” scenario.

The definition (29) of the neutrino mixing angle θν

involves the unitary matrix U . The definition (30) of U
can be expressed in a more explicit way as

ψν
Ln =

∞∑
i=1

Uni ψ
phys
Li [n = 0, 1, 2, . . .], (B.1)

where the index i = 1, 2, 3, . . . corresponds to the index
of mass eigenstates νi (see Sect. 3.1.1) and to the index of
the physical neutrino masses mνi

(see footnote 11). The
ith vector Uni represents the eigenstate associated to the
eigenvalue m2

νi
of MM†, and it is clear from (A.1) that

for each i value (recall that i = 1, 2, 3, . . .) one has

∞∑
n=0

(MM†−m2
νi

1)mnUni = 0 [m = 0, 1, 2, . . .]. (B.2)

After replacingMby its expression (24), in (B.2), we obtain
the following system of equations:( ∞∑

p=0

m(p) 2
ν −m2

νi

)
U0i +

∞∑
n=1

m(n)
ν m

(n)
KKUni = 0, (B.3)

m(m)
ν m

(m)
KK U0i + (m(m) 2

KK −m2
νi

)Umi = 0

[m = 1, 2, 3, . . .]. (B.4)
The normalization condition for the ith vector Uni, namely∑∞

n=0 U
2
ni = 1 [i = 1, 2, 3, . . .], leads, together with (B.4),

to the following analytical expression for U2
0i:

U2
0i =

[
1 +

∞∑
m=1

m
(m) 2
ν m

(m) 2
KK

(m(m) 2
KK −m2

νi
)2

]−1

. (B.5)

Therefore, a good approximation of the squared matrix
element U2

01 associated to the smallest squared neutrino
mass eigenvalue m2

ν1
, which verifies (A.9), is

U2
01 �


1 +

∞∑
m=1

(
m

(m)
ν

m
(m)
KK

)2



−1

. (B.6)

Finally, (B.6) and (29) allow one to obtain the wanted
expression for the neutrino mixing angle θν :

tan2 θν �
∞∑

m=1

(
m

(m)
ν

m
(m)
KK

)2

. (B.7)
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